

 Eliot

 v0.2.0

 Table of contents

 	Eliot - IoT Data Ingestion System

 	Contributor Covenant Code of Conduct

 	Contributing to Eliot

 	🧪 Eliot Testing Guide 🧪

 	Changelog

 	LICENSE

 	
 Modules

 	Core Components

 	Eliot

 	Eliot.Application

 	Error Handling

 	Eliot.ErrorHandler

 	Logging & Observability

 	Eliot.Logger

 	Message Processing

 	Eliot.MessageParser

 Eliot - IoT Data Ingestion System

"Hello, friend. Welcome to the world of connected devices."

Eliot is a production-ready IoT data ingestion system built with Elixir/OTP, designed for high-throughput sensor data processing and real-time fleet management. Born from the need to handle massive scale device communication with fault-tolerance and observability at its core.
🤖 Features
	Real-time MQTT Communication - Handle thousands of concurrent device connections
	Fault-Tolerant Architecture - Supervisor trees that never sleep, built to survive any crash
	Structured Logging - Every event tracked, every anomaly detected
	Circuit Breaker Patterns - Automatic recovery from network failures
	Environment-Specific Configuration - Seamless deployment from development to production
	Comprehensive Test Suite - High coverage with integration tests covering error scenarios and edge cases
	Clean Code Quality - Idiomatic Elixir following industry best practices

🏗️ Architecture
Eliot follows the "let it crash" philosophy - embrace failure, isolate it, and recover gracefully. The system is built around an OTP application with isolated supervision trees for maximum resilience.
┌───┐
│ Eliot Supervisor │
├───┤
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐ │
│ │ Error Handler │ │ Message Parser │ │ Logger │ │
│ │ (Retry Logic) │ │ (JSON Processing)│ │ (Telemetry) │ │
│ └─────────────────┘ └─────────────────┘ └──────────────┘ │
└───┘
The architecture demonstrates understanding of:
	Distributed Systems - Handle network partitions and node failures
	Event-Driven Design - React to device events in real-time
	Observability - Full system visibility through structured logging
	Scalability - Process millions of messages without breaking a sweat

🚀 Quick Start
Prerequisites
	Elixir 1.14+ - Install Elixir
	Erlang/OTP 25+ - Erlang Downloads
	Git - Install Git
	MQTT Broker (optional for development) - Eclipse Mosquitto

Installation
Clone the repository
git clone https://github.com/christimahu/eliot.git
cd eliot

Install dependencies
mix deps.get

Run tests to verify everything works
mix test

Start the application
mix run --no-halt

Development
Run with interactive shell
iex -S mix

Run linting (if configured)
mix credo

Format code
mix format

Build production release
MIX_ENV=prod mix release

Learning Resources
	Elixir Official Guide - Learn Elixir fundamentals
	OTP Design Principles - Understanding supervision trees
	MQTT Protocol - IoT messaging protocol documentation
	Phoenix Framework - If adding web interfaces
	Nerves Project - For embedded IoT devices

🔧 Configuration
Eliot supports environment-specific configuration:
config/prod.exs
config :eliot,
 mqtt: [
 broker_host: System.get_env("MQTT_BROKER_HOST"),
 broker_port: 8883,
 ssl: true,
 keepalive: 300
]
Environment Variables
	MQTT_BROKER_HOST - Production MQTT broker hostname
	MQTT_USERNAME - Authentication username
	MQTT_PASSWORD - Authentication password
	MQTT_CLIENT_CERT_FILE - Client certificate for mutual TLS

📊 Message Format
All device messages follow a standardized JSON schema:
{
 "device_id": "robot_001",
 "timestamp": "2025-06-05T14:30:00Z",
 "sensor_type": "gps",
 "data": {
 "latitude": 37.7749,
 "longitude": -122.4194,
 "accuracy": 3.2
 }
}
🛡️ Error Handling
Eliot implements sophisticated error handling patterns:
	Exponential Backoff - Automatic retry with increasing delays
	Circuit Breakers - Fail fast when services are down
	Dead Letter Queues - Preserve unprocessable messages for analysis
	Graceful Degradation - Continue operating with reduced functionality

Example: Device connection timeout handling
{:retry, %{device_id: "robot_001", backoff_ms: 2000}}

Example: Authentication failure handling
{:circuit_break, %{device_id: "robot_002", reason: :auth_failure}}
📈 Monitoring & Observability
Every operation generates structured logs for production monitoring:
Device connection events
Eliot.Logger.log_device_event("robot_001", :connected)

Message processing metrics
Eliot.Logger.log_processing_event("message_123", 150, :ok)

Security events
Eliot.Logger.log_error("Authentication failure", %{device_id: "unknown", reason: :auth_failure})
🧪 Testing
Run all tests
mix test

Run with coverage
mix test --cover

Run integration tests only
mix test test/eliot/integration/

Run tests excluding integration tests
mix test --exclude integration

The test suite covers:
	Unit Tests - Individual module functionality
	Integration Tests - MQTT connection lifecycle
	Error Scenarios - Network failures and malformed data
	Configuration Validation - Environment-specific settings

See TESTING.md for detailed testing documentation.
🏭 Production Deployment
Building a Release
Create production release
MIX_ENV=prod mix release

Run the release
_build/prod/rel/eliot/bin/eliot start

Docker Deployment
FROM elixir:1.14-alpine
WORKDIR /app
COPY mix.exs mix.lock ./
RUN mix deps.get --only prod
COPY . .
RUN MIX_ENV=prod mix release
CMD ["_build/prod/rel/eliot/bin/eliot", "start"]
🤝 Contributing
We welcome contributions! Please read our Contributing Guide and Code of Conduct:
	Fork the repository
	Create a feature branch: git checkout -b feature/new-capability
	Write tests for your changes
	Ensure all tests pass: mix test
	Run linting: mix credo (if configured)
	Submit a pull request

📋 Requirements Checklist
	[x] Production-ready error handling
	[x] Comprehensive test coverage with integration tests
	[x] Environment-specific configuration
	[x] Structured logging for observability
	[x] Circuit breaker patterns
	[x] MQTT protocol support
	[x] Clean code quality
	[x] Documentation with examples
	[x] Graceful shutdown handling

🏆 Quality Metrics
Tests: Comprehensive unit and integration test coverage
Coverage: High coverage of critical paths
Credo: Clean code following Elixir best practices
Format: All code properly formatted
Docs: Comprehensive with examples
🔮 Roadmap
	Phase 1: Core MQTT workers and message processing (Current)
	Phase 2: HTTP API for fleet management
	Phase 3: Real-time dashboards and alerting
	Phase 4: Machine learning anomaly detection
	Phase 5: Multi-region deployment and edge computing

📚 Documentation
	Testing: See TESTING.md for detailed testing information
	Changes: See CHANGELOG.md for version history
	Contributing: See CONTRIBUTING.md for contribution guidelines

📄 License
This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.

"The world is a dangerous place, not because of those who do evil, but because of those who look on and do nothing. Eliot watches, processes, and acts."
Built with ❤️ and lots of ☕ for the IoT revolution.

 Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or advances of
any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email address,
without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
https://christimahu.com/contact.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series of
actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the
community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by
Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 Contributing to Eliot

Thank you for considering contributing to Eliot! This document outlines the process for contributing to the project and helps to ensure your contributions can be efficiently reviewed and potentially integrated into the codebase.
Code of Conduct
This project adheres to the Contributor Covenant. By participating, you are expected to uphold this code. Please report unacceptable behavior via https://christimahu.com/contact.
How Can I Contribute?
Reporting Bugs
Bug reports are tracked as GitHub issues. When creating a bug report, please include as much detail as possible:
	Use a clear and descriptive title for the issue to identify the problem.
	Describe the exact steps to reproduce the problem in as much detail as possible.
	Provide specific examples or code snippets to demonstrate the steps.
	Describe the behavior you observed after following the steps and why you consider it a bug.
	Explain the behavior you expected to see instead and why.
	Include details about your environment (Elixir version, Erlang/OTP version, OS).

Suggesting Enhancements
Enhancement suggestions are also tracked as GitHub issues. When suggesting an enhancement:
	Use a clear and descriptive title for the issue.
	Provide a detailed description of the suggested enhancement and its expected behavior.
	Explain why this enhancement would be useful to IoT developers and the broader Elixir community.
	List similar libraries or tools where this enhancement exists, if applicable.

Code Contributions
Development Workflow
	Fork the repository on GitHub.
	Clone your fork to your local machine.
	Create a new branch from the main branch for your changes (git checkout -b feature/my-new-feature).
	Make your changes following the coding conventions described below.
	Write or adapt tests as necessary.
	Ensure all tests pass by running mix test.
	Ensure code is formatted by running mix format.
	Check code quality with mix credo.
	Commit your changes with clear commit messages.
	Push your branch to your fork on GitHub.
	Submit a Pull Request from your branch to the project's main branch.

Pull Request Process
	Ensure your code follows the coding conventions.
	Update documentation as necessary.
	Add tests that verify your changes.
	Make sure all tests pass and that test coverage is maintained or improved.
	The PR should clearly describe the problem and solution.
	The PR will be reviewed by at least one maintainer.

Coding Conventions
	Code Style: The codebase follows the official Elixir Style Guide. We use Credo for static analysis to enforce these standards.
	Formatting: We use mix format for automated code formatting. Please run it before committing your changes.
	Naming Conventions:	Use snake_case for variables and function names.
	Use CamelCase for module names.

	Comments and Documentation:	Use ExDoc-style comments for all public modules and functions (@moduledoc and @doc).
	Write clear comments to explain complex or non-obvious code.
	Keep comments up-to-date with code changes.

	Error Handling:	Use {:ok, value} and {:error, reason} tuples for functions that can fail.
	Use exceptions primarily for programmer errors (e.g., invalid arguments).
	Document expected error returns in the function's documentation.

Test Requirements
	All new code must have comprehensive tests using ExUnit.
	Pull requests must maintain or improve the current test coverage. We aim for >95% coverage.
	Tests should cover:	Basic functionality (the "happy path").
	Edge cases (e.g., empty lists, zero values, nils).
	Error handling (invalid inputs, expected failures).

Example test structure:
defmodule Eliot.MyModuleTest do
 use ExUnit.Case, async: true

 describe "my_function/1" do
 test "returns :ok for valid input" do
 # Given: valid input
 input = "valid"

 # When: the function is called
 result = Eliot.MyModule.my_function(input)

 # Then: the result is as expected
 assert {:ok, "processed"} == result
 end

 test "returns :error for invalid input" do
 assert {:error, :invalid_input} == Eliot.MyModule.my_function(nil)
 end
 end
end
Development Setup
Prerequisites
	Elixir 1.14+
	Erlang/OTP 25+

Building for Development
	Clone your fork:git clone https://github.com/yourusername/eliot.git
cd eliot

	Install dependencies:mix deps.get

	Run the tests to ensure everything is working:mix test

	To run the application in an interactive shell:iex -S mix

Community Priorities
As a project focused on IoT data ingestion, contributions that enhance these aspects are particularly welcome:
	Reliability improvements in the ErrorHandler or supervision tree.
	Performance enhancements for high-throughput message processing.
	Additional protocol support or improved MQTT feature handling.
	Documentation and examples that help people integrate Eliot into their systems.
	Security features that protect against common IoT vulnerabilities.

Additional Notes
Git Workflow Tips
	Keep your commits atomic and focused on a single issue.
	Write meaningful commit messages explaining the "what" and "why" of your changes.
	Rebase your branch onto the latest main before submitting a PR to maintain a clean history.

Questions?
If you have any questions about contributing, please open an issue and tag it with question.
Thank you for contributing to Eliot and helping create a more robust open-source IoT ecosystem!

 🧪 Eliot Testing Guide 🧪

Welcome to the Eliot testing documentation! This guide explains how to run tests, understand the test suite, and create new tests for the Eliot system.
📋 Table of Contents
	Test Suite Overview
	Running Tests
	Understanding Test Types
	Test Framework (ExUnit)
	Writing New Tests
	Test Coverage
	Continuous Integration
	Testing Best Practices

Test Suite Overview
Eliot includes a comprehensive test suite that validates:
	Core Functionality: Correctness of module logic and public APIs.
	OTP Behavior: Proper GenServer/Supervisor initialization, state changes, and shutdown.
	Error Handling: Circuit breaker and retry logic correctness.
	Integration: How different components of the system interact.

Tests are organized into two main categories:
	Unit Tests: Testing individual modules and functions in isolation.
	Integration Tests: Testing the interaction between different components (e.g., ErrorHandler and Logger).

Running Tests
Running All Tests
The simplest way to run all tests is using the standard mix command:
mix test
This will compile the project if needed and run all tests found in the test/ directory.
Running a Single Test File
To run tests from a single file:
mix test test/eliot/error_handler_test.exs
Running a Single Test
To run a specific test case from a file, you can specify the line number:
mix test test/eliot/error_handler_test.exs:25
Excluding or Including Tests with Tags
You can tag tests to run specific categories. For example, integration tests are tagged with :integration.
Run only integration tests
mix test --only integration

Run all tests except integration tests
mix test --exclude integration
Understanding Test Types
Unit Tests
Unit tests check individual modules and functions in isolation. These tests focus on:
	Public function return values for given inputs.
	GenServer callbacks and state transitions.
	Logic inside private functions (tested via their public-facing callers).

Sample unit test files:
	test/eliot/elixir_test.exs
	test/eliot/error_handler_test.exs
	test/eliot/logger_test.exs

Integration Tests
Integration tests verify that different components work together correctly. For Eliot, this includes:
	Ensuring an error handled by ErrorHandler is correctly logged by Eliot.Logger.
	Verifying the Eliot.Application correctly starts and supervises its children.

Sample integration test files:
	test/eliot/integration/mqtt_integration_test.exs

Test Framework (ExUnit)
Eliot uses Elixir's built-in testing framework, ExUnit.
Test Structure
Tests are defined inside modules using use ExUnit.Case. The describe block groups related tests, and each test block defines a single test case.
defmodule Eliot.MyModuleTest do
 use ExUnit.Case, async: true

 describe "my_function/2" do
 test "does something correctly" do
 assert Eliot.MyModule.my_function(:a, :b) == :ok
 end
 end
end
Setup
You can use setup or setup_all blocks to run setup code before tests. setup runs before each test in a block, while setup_all runs once for the entire block.
defmodule Eliot.MyModuleTest do
 use ExUnit.Case, async: true

 setup do
 # This runs before each test
 {:ok, pid} = MyGenServer.start_link()
 # The returned value is passed to the test context
 %{pid: pid}
 end

 test "sends a message to the genserver", context do
 assert :ok == MyGenServer.do_something(context.pid)
 end
end
Assertions
ExUnit provides various assertion macros:
	assert some_condition == true
	refute some_condition == true
	assert_raise(MyError, fn -> ... end)
	assert_receive(:my_message, 100)
	assert_received(:my_message)

Mocking
For isolating components from their dependencies, we recommend using a library like Mox. Mox allows you to define mock implementations of your modules' behaviors for testing.
Writing New Tests
To create a new unit test:
	Create a new file in the test/eliot/ directory, ending with _test.exs.
	Follow this basic structure:defmodule Eliot.NewFeatureTest do
use ExUnit.Case, async: true

describe "new_feature_function/1" do
 test "handles valid input correctly" do
 # Given valid input
 input = "valid"

 # When the function is called
 result = Eliot.NewFeature.new_feature_function(input)

 # Then the result is correct
 assert result == :ok
 end

 test "handles invalid input with an error tuple" do
 assert Eliot.NewFeature.new_feature_function(nil) == {:error, :invalid_input}
 end
end
end

	Run mix test to ensure your new tests are picked up and pass.

Test Coverage
We aim for high code coverage across the codebase.
Measuring Coverage
You can generate a test coverage report by running:
mix test --cover
This generates a report in cover/index.html which you can open in your browser to see which lines of code are covered by tests.
Coverage Requirements
	Core functionality in Eliot, Eliot.ErrorHandler, and Eliot.Logger should have >95% coverage.
	All public API functions must have tests.
	Error handling paths must be tested explicitly.

Continuous Integration
Eliot uses GitHub Actions for continuous integration. The workflow runs automatically on pull requests and includes:
	Running mix test
	Checking formatting with mix format --check-formatted
	Running static analysis with mix credo

Testing Best Practices
	Test One Thing at a Time: Each test should verify a single, specific behavior.
	Use Descriptive Names: Test names should clearly describe what is being tested.
	Isolate Tests: Use async: true where possible to run tests concurrently and ensure they don't depend on shared state.
	Test the Public API: Focus tests on the public-facing functions of your modules, not the private implementation details.
	Test Failure Cases: Verify that your functions fail appropriately with invalid inputs and that your application recovers gracefully from errors.

 If you have questions about testing, please reach out via GitHub issues.

 Changelog

All notable changes to this project will be documented in this file.
v0.2.0 - 2025-06-08
Changed
	Major refactor of core application logic for improved stability.
	Overhauled the testing framework for clarity and robustness.

Added
	Comprehensive test suite with coverage increased to over 90%.
	Detailed tests for logger formatting, including metadata and edge cases.

Fixed
	Corrected logger implementation to reliably use the custom telemetry handler in all environments.
	Resolved multiple test failures and race conditions present in the initial version.

v0.1.0 - 2025-06-06
Added
	Initial release of Eliot.
	Fault-tolerant OTP application structure.
	Eliot.Logger for structured, centralized logging with telemetry integration.
	Eliot.ErrorHandler with retry and circuit-breaker logic for resilient operations.
	Comprehensive test suite with unit and integration tests.
	Full ExDoc documentation for the public API.

 LICENSE

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

Eliot

Eliot - Production-ready IoT data ingestion system.
Provides fault-tolerant MQTT communication, structured logging,
and comprehensive error handling for scalable device fleet management.
Features
	Fault-tolerant MQTT communication using Tortoise client
	Structured logging with telemetry integration
	Comprehensive error handling with retry mechanisms
	Production-ready with OTP supervision trees
	Scalable architecture for device fleet management

Quick Start
Start the application
{:ok, _} = Application.start(:eliot)

The MQTT client and supervisors start automatically
Configuration
Configure MQTT broker settings in your application config:
config :eliot,
 mqtt_broker: "localhost",
 mqtt_port: 1883,
 client_id: "eliot_client"
Architecture
Eliot uses OTP supervision trees to ensure fault tolerance:
	Eliot.Application - Main application supervisor
	Eliot.Logger - Structured logging with telemetry
	Eliot.ErrorHandler - Centralized error handling and recovery

 Summary

 Functions

 config(key, default \\ nil)

 Returns configuration for the given key.

 start_mqtt_connection()

 Starts MQTT connection with the configured broker.

 version()

 Returns the version of Eliot.

 Functions

 config(key, default \\ nil)

Returns configuration for the given key.

 start_mqtt_connection()

Starts MQTT connection with the configured broker.

 version()

Returns the version of Eliot.

Eliot.Application

The Eliot Application.
Starts and supervises all components of the IoT data ingestion system,
including MQTT connections, logging infrastructure, and error handling.

 Summary

 Functions

 health_check()

 Returns the current status of all supervised children.

 supervisor_info()

 Returns the application supervision tree information.

 Functions

 health_check()

Returns the current status of all supervised children.

 supervisor_info()

Returns the application supervision tree information.

Eliot.ErrorHandler

Centralized error handling and recovery for the Eliot IoT system.
Provides retry mechanisms, circuit breaker patterns, and comprehensive
error tracking for resilient device communication and data processing.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 circuit_open?()

 Checks if the circuit breaker is open (blocking requests).

 get_stats()

 Returns error handling statistics.

 handle_error(error, context \\ %{}, retry_fn \\ nil)

 Handles an error with automatic retry and circuit breaker logic.

 reset_circuit()

 Resets the circuit breaker to closed state.

 start_link(opts \\ [])

 Starts the error handler GenServer.

 with_retry(func, context \\ %{}, max_attempts \\ 3)

 Executes a function with automatic error handling and retries.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 circuit_open?()

Checks if the circuit breaker is open (blocking requests).

 get_stats()

Returns error handling statistics.

 handle_error(error, context \\ %{}, retry_fn \\ nil)

Handles an error with automatic retry and circuit breaker logic.

 reset_circuit()

Resets the circuit breaker to closed state.

 start_link(opts \\ [])

Starts the error handler GenServer.

 with_retry(func, context \\ %{}, max_attempts \\ 3)

Executes a function with automatic error handling and retries.

Eliot.Logger

Centralized logging for the Eliot IoT data ingestion system.
Provides structured logging with telemetry integration for comprehensive
observability of device communications, data processing, and system events.
Features
	Structured logging with metadata enrichment
	Telemetry event integration for system monitoring
	Device-specific event tracking
	MQTT connection lifecycle logging
	Data processing performance metrics
	Automatic statistics reporting

Usage
Basic logging
Eliot.Logger.log_info("System started", %{component: "application"})
Eliot.Logger.log_error("Connection failed", %{retry_count: 3})

Device event logging
Eliot.Logger.log_device_event("sensor_001", "temperature_reading", %{
 temperature: 23.5,
 humidity: 65.0
})

MQTT event logging
broker_config = %{host: "mqtt.example.com", port: 1883}
Eliot.Logger.log_mqtt_event("connection_established", broker_config)

Processing event logging
Eliot.Logger.log_processing_event("msg_123", 150, "success")
All logging functions automatically emit corresponding telemetry events
for integration with monitoring and alerting systems.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 handle_telemetry_event(event_name, measurements, metadata, config)

 Handles telemetry events for system-wide logging.

 log_device_event(device_id, event_type, data \\ %{})

 Logs device-specific events with standardized metadata.

 log_error(message, metadata \\ %{})

 Logs an error-level message with structured metadata.

 log_info(message, metadata \\ %{})

 Logs an info-level message with structured metadata.

 log_mqtt_event(event_type, broker_info, data \\ %{})

 Logs MQTT-related events with connection metadata.

 log_processing_event(message_id, processing_time_ms, result)

 Logs data processing events with performance metrics.

 log_warning(message, metadata \\ %{})

 Logs a warning-level message with structured metadata.

 start_link(opts \\ [])

 Starts the logger GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 handle_telemetry_event(event_name, measurements, metadata, config)

Handles telemetry events for system-wide logging.
This function is defined as a module function to avoid the telemetry
performance warning about local functions.

 log_device_event(device_id, event_type, data \\ %{})

Logs device-specific events with standardized metadata.
Automatically enriches the event with timestamp and device information,
then emits a telemetry event for monitoring systems.
Parameters
	device_id - Unique identifier for the device
	event_type - Type of event (e.g., "sensor_reading", "connection_lost")
	data - Optional event-specific data (default: %{})

Examples
Simple device event
Eliot.Logger.log_device_event("sensor_001", "online")

Device event with sensor data
Eliot.Logger.log_device_event("thermometer_42", "temperature_reading", %{
 temperature: 23.5,
 humidity: 65.0,
 battery_level: 87
})

 log_error(message, metadata \\ %{})

Logs an error-level message with structured metadata.
Parameters
	message - The log message string
	metadata - Optional map of structured metadata (default: %{})

Examples
Eliot.Logger.log_error("Database connection failed")
Eliot.Logger.log_error("API request timeout", %{endpoint: "/api/data", timeout_ms: 5000})

 log_info(message, metadata \\ %{})

Logs an info-level message with structured metadata.
Parameters
	message - The log message string
	metadata - Optional map of structured metadata (default: %{})

Examples
Eliot.Logger.log_info("System initialized successfully")
Eliot.Logger.log_info("User authenticated", %{user_id: "123", method: "oauth"})

 log_mqtt_event(event_type, broker_info, data \\ %{})

Logs MQTT-related events with connection metadata.
Tracks MQTT broker interactions including connections, disconnections,
message publishing, and subscription events.
Parameters
	event_type - Type of MQTT event (e.g., "connection_established", "message_published")
	broker_info - Map containing broker connection details
	data - Optional event-specific data (default: %{})

Examples
broker_config = %{host: "mqtt.example.com", port: 1883, client_id: "eliot_001"}

Connection event
Eliot.Logger.log_mqtt_event("connection_established", broker_config)

Message publishing event
Eliot.Logger.log_mqtt_event("message_published", broker_config, %{
 topic: "sensors/temperature",
 qos: 1,
 payload_size: 128
})

 log_processing_event(message_id, processing_time_ms, result)

Logs data processing events with performance metrics.
Tracks message processing performance and outcomes for monitoring
system throughput and identifying bottlenecks.
Parameters
	message_id - Unique identifier for the processed message
	processing_time_ms - Processing duration in milliseconds
	result - Processing outcome (e.g., "success", "error", "timeout")

Examples
Successful processing
Eliot.Logger.log_processing_event("msg_12345", 150, "success")

Failed processing
Eliot.Logger.log_processing_event("msg_12346", 2500, "timeout")

 log_warning(message, metadata \\ %{})

Logs a warning-level message with structured metadata.
Parameters
	message - The log message string
	metadata - Optional map of structured metadata (default: %{})

Examples
Eliot.Logger.log_warning("High memory usage detected")
Eliot.Logger.log_warning("Rate limit approaching", %{current_rate: 95, limit: 100})

 start_link(opts \\ [])

Starts the logger GenServer.
Options
	:name - The name to register the GenServer under (default: __MODULE__)

Examples
{:ok, pid} = Eliot.Logger.start_link()
{:ok, pid} = Eliot.Logger.start_link(name: MyLogger)

Eliot.MessageParser

Handles decoding of standardized JSON messages from devices.

 Summary

 Functions

 parse(json_string)

 Parses a JSON-encoded message string into an Elixir map.

 Functions

 parse(json_string)

Parses a JSON-encoded message string into an Elixir map.
Returns {:ok, map} on success or {:error, reason} if parsing fails.
Failed parses are automatically logged as a warning.
Examples
iex> valid_json = ~s({
...> "device_id": "robot_001",
...> "timestamp": "2025-06-05T14:30:00Z",
...> "sensor_type": "gps",
...> "data": { "latitude": 37.7749, "longitude": -122.4194 }
...> })
iex> Eliot.MessageParser.parse(valid_json)
{:ok, %{
 "data" => %{"latitude" => 37.7749, "longitude" => -122.4194},
 "device_id" => "robot_001",
 "sensor_type" => "gps",
 "timestamp" => "2025-06-05T14:30:00Z"
}}

iex> invalid_json = ~s({"device_id": "robot_001",})
iex> match?({:error, %Jason.DecodeError{}}, Eliot.MessageParser.parse(invalid_json))
true

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

